Advance Information

BI-CDMOSIC PWM Constant-Current Control Stepper Motor Pre-Driver

Overview

LV8726TA is a stepper motor pre-driver for a bipolar stepper motor that can drive PWM constant current control and uses external P-N channel MOSFETs. The device integrates sixteen step modes from half step to 1/128 step and suits for various industrial equipment.

The operation voltage is high at 9V to 55V, and a motor can easily drive by CLK input.

Operation of a device can be programed by a SPI serial interface. Step mode, output current ratio, decay mode, blanking time and chopping(PWM) period are programmable via a SPI serial interface.

The device can reduce current consumption by setting standby mode, when idle.

TQFP48 EP 7×7, 0.5P

Feature

- 1 channel PWM constant-current control stepper motor pre driver of P-N channel MOSFET drive
- BiCDMOS process IC
- 1/2,1/4,1/8,1/16,1/32,1/64,1/128 Step and, 1/3,1/6,1/12,1/36,1/5,1/10,1/20,1/50,1/100 Step are selectable.
- Advance the excitation step with the only step signal input
- 8-bit 3-wire serial control
- Over-current protection circuit
- Low voltage protection circuit
- Thermal shutdown circuit
- Input pull down resistance
- With reset pin and enable pin

Typical Applications

- Textile machine
- Packing machine
- Large printer
- Engraving machine
- Industrial instrument

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ORDERING INFORMATION

See detailed ordering and shipping information on page 34 of this data sheet.

Specifications Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	VM max	VM	60	V
Output current	I _O max	GU1,GU2,GU3,GU4 GB1,GB2,GB3,GB4	50	mA
Logic supply voltage	VCCmax	VCC	6	V
Logic input voltage	V _{IN} max	ST,SCLK,SDATA,STB,STEP,RST,OE,FR	6	V
VREF input voltage	VREF max	VREF	6	V
Allowable power dissipation	Pd max	*	3.35	W
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		–55 to +150	°C

* Specified circuit board : 90mm× 90mm× 1.6mm, glass epoxy 2-layer board, with backside mounting.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

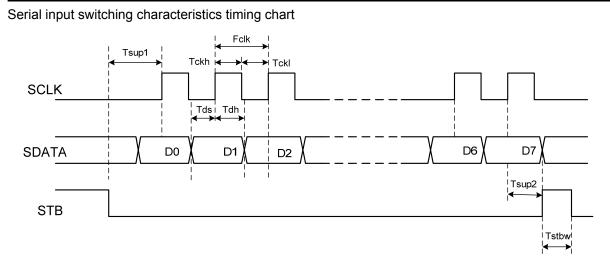
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

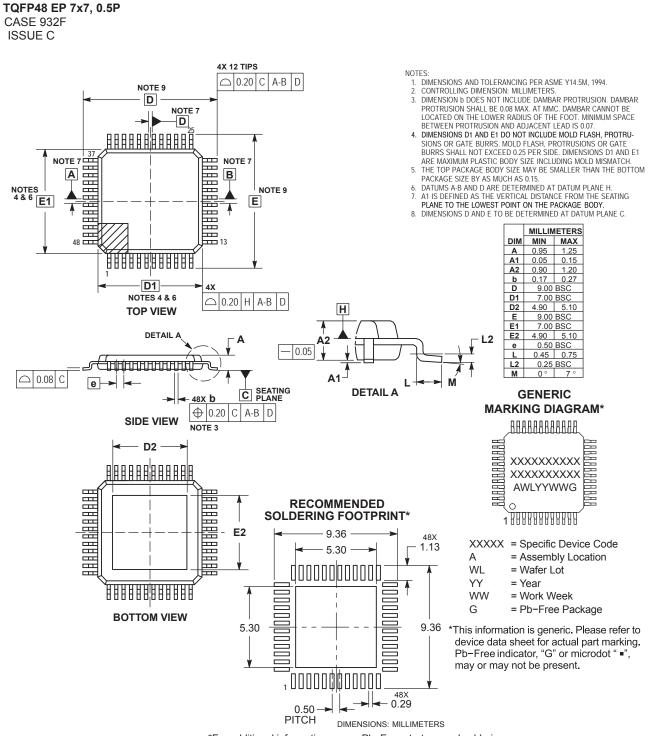
Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage range	VM	VM	9 to 55	V
Logic supply voltage range	VCC	VCC	2.7 to 5.5	V
Logic input voltage range	VIN	ST,SCLK,SDATA,STB,STEP,RST,OE,FR	0 to VCC	V
	VDEE	3.8V≤VCC≤5.5V	0 to 2.0	
VREF input voltage range	VREF	2.7V≤VCC<3.8V	0 to VCC-1.8	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

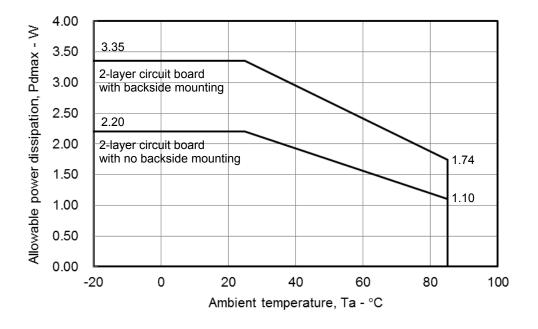

Electrical Characteristics at Ta = 25°C, VM = 48V, V_{CC} = 5V, VREF= 1.5V

Parameter	Symbol	Conditions	min	typ	max	unit
	I _M stn	ST="L", with no load			1	μA
Standby mode current	ICCstn	ST="L", with no load			1	μA
	IM	ST="H",OE="L",RST="L", with no load		1.6	2.3	mA
Supply current	ICC	ST="H",OE="L",RST="L", with no load		1.7	2.3	mA
Thermal shutdown temperature	TSD	Design guarantee	150	180	210	°C
Thermal hysteresis width	ΔTSD	Design guarantee		40		°C
V _{CC} low voltage cutting voltage	Vthvc	Watching VCC pin voltage		2.3	2.45	V
VCC low voltage release voltage	Vrevc	Watching VCC pin voltage		2.5	2.7	V
V_{M} low voltage cutting voltage	Vthvm	Watching VM pin voltage		7.6	8.4	V
VM low voltage release voltage	Vrevm	Watching VM pin voltage		7.85	8.7	V
REG10 Output voltage	VREG1		9.4	10	10.6	V
VM-10V Output voltage	VREG2		37	38	39	V
		ST,SCLK,SDATA,STB,STEP,RST,OE,FR		0	40	
Logic pin input current	IINL	V _{IN} =0.8V	4	8	12	μA
	IINH	ST,SCLK,SDATA,STB,STEP,RST,OE,FR	30	50	70	μA
	-11N	V _{IN} =5V				P., .

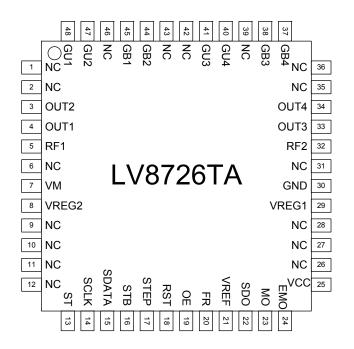
Continued on next page.


Parameter	Symbol	Conditions	min	typ	max	unit
Logic high-level input voltage	V _{IN} H		2.0		5.5	V
Logic low-level input voltage	V _{IN} H	ST,SCLK,SDATA,STB,STEP,RST,OE,FR	0		0.8	V
	Fchop1	D0=L,D1=H,D6=L,D7=L	6	8	10	μs
	Fchop2	D0=L,D1=H,D6=H,D7=L	12	16	20	μs
Chopping (PWM) period	Fchop3	D0=L,D1=H,D6=L,D7=H	18	24	30	μs
	Fchop4	D0=L,D1=H,D6=H,D7=H	24	32	40	μs
VREF pin input current	Iref	VREF=1.5V	-0.5		0	μA
	VRF000	D0=H,D1=L,D2=L,D3=L,D4=L	0.291	0.3	0.309	V
	VRF001	D0=H,D1=L,D2=H,D3=L,D4=L	0.261	0.27	0.279	V
	VRF010	D0=H,D1=L,D2=L,D3=H,D4=L	0.231	0.24	0.248	V
Current setting comparator	VRF011	D0=H,D1=L,D2=H,D3=H,D4=L	0.201	0.21	0.218	V
threshold voltage	VRF100	D0=H,D1=L,D2=L,D3=L,D4=H	0.172	0.18	0.188	V
(current attenuation rate switching)	VRF101	D0=H,D1=L,D2=H,D3=L,D4=H	0.142	0.15	0.158	V
	VRF110	D0=H,D1=L,D2=L,D3=H,D4=H	0.112	0.12	0.128	V
	VRF111	D0=H,D1=L,D2=H,D3=H,D4=H	0.082	0.09	0.098	V
SDO pin saturation voltage	Vsatsdo	Isdo=1mA			400	mV
MO pin saturation voltage	Vsatmo	Imo=1mA			400	mV
EMO pin saturation voltage	Vsatemo	lemo=1mA			400	mV
	STEP1	D0=H,D1=L,D7=L	0.39	0.52	0.65	s
STEP signal detection time	STEP2	D0=H,D1=L,D7=H	0.78	1.04	1.3	s
	Danilla	GU1,GU2,GU3,GU4-source		20	20	Ω
High Side	RonH1	lo=-10mA		20	32	32
Output on resistance	RonH2	GU1,GU2,GU3,GU4-sink Io=10mA		25	40	Ω
	RonL1	GB1,GB2,GB3,GB4-source side		20	32	Ω
Low Side		Io=-10mA				
Output on resistance	RonL2	GB1,GB2,GB3,GB4-sink side lo=10mA		25	40	Ω
Serial Data Transfer Pin						
Minimum SCLK "H" pulse width	Tckh		0.125			μs
Minimum SCLK "L" pulse width	Tckl		0.125			μs
Minimum set up time	Tsup1		0.125			μs
(STB→SCLK rising edge) Minimum set up time						
(SCLK→STB rising edge)	Tsup2		0.125			μs
Minimum STB pulse width	Tstbw		0.125			μs
Data set up time	Tds		0.125			μs
Data hold time	Tdh		0.125			μs
Maximum SCLK frequency	Fclk				4	MHz

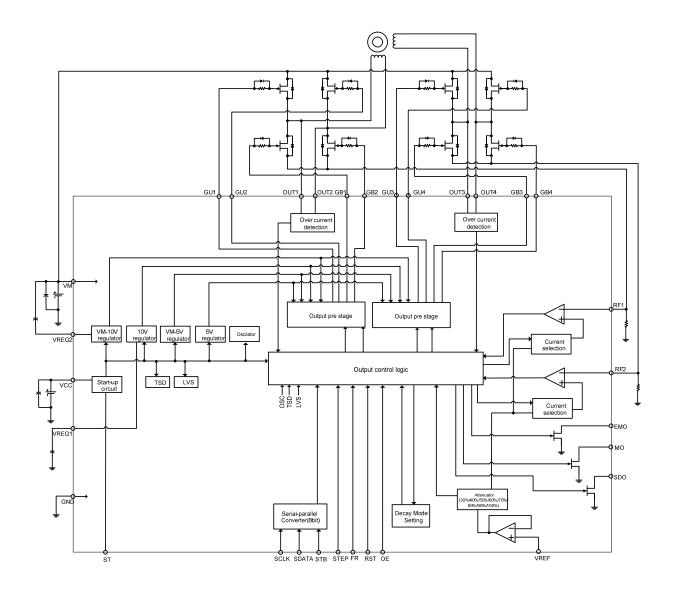
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Package Dimensions

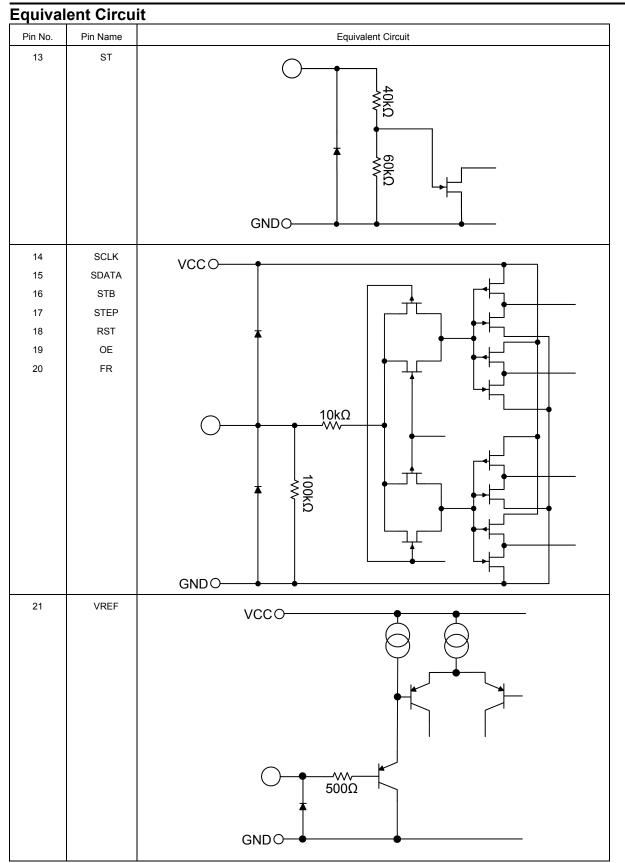
unit : mm



*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

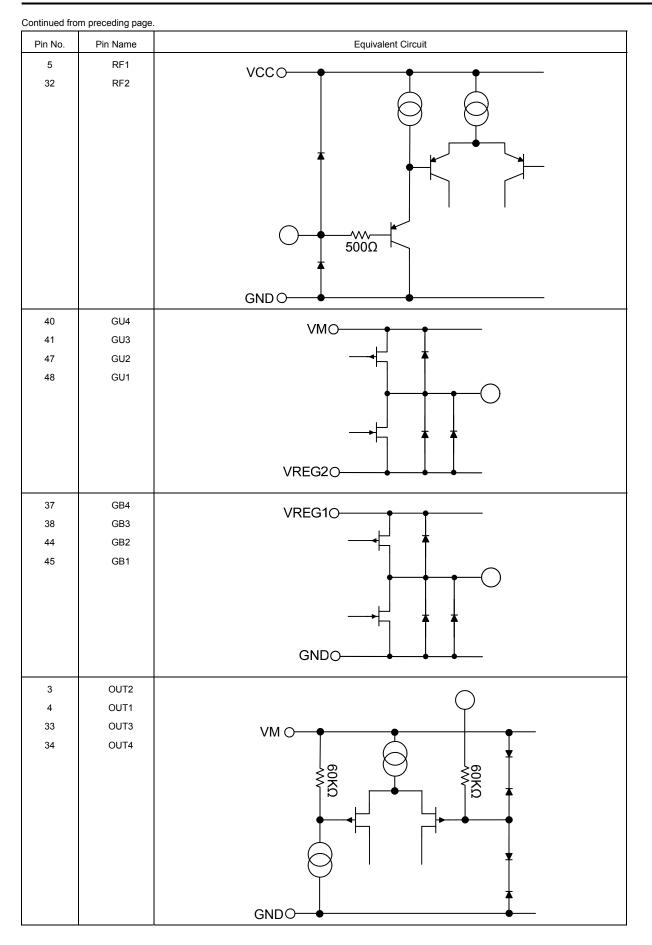

Pdmax - Ta

Pin Assignment



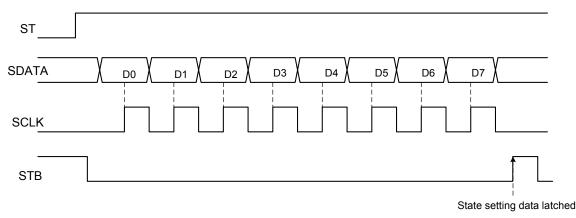
Block Diagram

Pin Functions


Pin No	Pin Name	Pin Function			
3	OUT2	OUT2 voltage detection pin			
4	OUT1	OUT1 voltage detection pin			
5	RF1	Channel 1 Output current detection pin			
7	VM	Motor power supply voltage pin			
8	VREG2	Internal regulator capacitor connection pin for upper side FET drive			
13	ST	Chip enable pin.			
14	SCLK	Serial data transfer clock input			
15	SDATA	Serial data input			
16	STB	Serial data latch pulse input			
17	STEP	Step clock pulse signal input pin			
18	RST	Reset signal input pin			
19	OE	Output enable signal input pin			
20	FR	Forward / Reverse signal input pin			
21	VREF	Constant-current control reference voltage input pin.			
22	SDO	STEP detection output pin			
23	МО	Position detecting monitor pin			
24	EMO	Unusual condition warning output pins			
25	VCC	Logic supply voltage pin			
29	VREG1	Internal regulator capacitor connection pin for lower side FET drive			
30	GND	GND pin			
32	RF2	Channel 2 Output current detection pin			
33	OUT3	OUT3 voltage detection pin			
34	OUT4	OUT4 voltage detection pin			
37	GB4	Output terminal for lower side gate drive 4			
38	GB3	Output terminal for lower side gate drive 3			
40	GU4	Output terminal for upper side gate drive 4			
41	GU3	Output terminal for upper side gate drive 3			
44	GB2	Output terminal for lower side gate drive 2			
45	GB1	Output terminal for lower side gate drive 1			
47	GU2	Output terminal for upper side gate drive 2			
48	GU1	Output terminal for upper side gate drive 1			
1,2,6,9, 10,11,12, 26,27,28, 31,35,36, 39,42,43, 46	NC	No connect			

Continued on next page.

Continued fro	m preceding page	
Pin No.	Pin Name	Equivalent Circuit
22	SDO	\sim
23	МО	
24	EMO	
		GNDO
29	VREG1	VMO
		$\mathbf{\Psi}$
		β [
		GNDO
8	VREG2	


Continued on next page.

Description of operation

1. Serial Data Input Specifications

(1-1) Serial data input setup

The first of serial data communication, STB is set Low, and then input SDATA and SCLK signals. The SCLK signal is not accepted when STB is high.

SDATA inputs the data in the order of D0, D1, ... D6, D7.

Data is transferred on the rising edge of SCLK and after all data has been transferred, all data are latched on the rising edge of STB.

(1-2) Timing with which the Serial Data Settings are reflected at the Output

Type 1: After data latch, reflected by next STEP rising edge.

Step mode setting and Decay mode setting are reflected in a timing of type 1.

Type 2: Reflected at the same time as the STB signal data latch operation.

Current setting reference voltage attenuation ratio, chopping (PWM) period, blanking time, STEP signal detection

time, over-current protection setting and EMO output setting are reflected in a timing of type 2.

STEP		STEP			
STB		STB			
	Data latch timing Reflected at the rising edge		T اData latch timing ا	STB timing	
Type1	Example: 1/4 Step Kample: 1/16 Step	Type2	X	L	

Seria	l Dat	a Tru	th Tal	ole 1											
	Input							Setting mode	Description	Serial reflectior					
D7	D6	D5	D4	D3	D2	D1	D0	5		STEP	STB				
-	-	0	0	0	0				1/2 Step						
-	-	0	0	0	1				1/4 Step						
-	-	0	0	1	0				1/8 Step						
-	-	0	0	1	1				1/16 Step						
-	-	0	1	0	0				1/32 Step						
-	-	0	1	0	1				1/64 Step						
-	-	0	1	1	0				1/128 Step						
-	-	0	1	1	1			Step mode	1/3 Step						
-	-	1	0	0	0			setting	1/6 Step	0					
-	-	1	0	0	1				1/12 Step						
-	-	1	0	1	0				1/36 Step						
-	-	1	0	1	1	0	0		1/5 Step						
-	-	1	1	0	0				1/10 Step						
-	-	1	1	0	1				1/20 Step						
-	-	1	1	1	0				1/50 Step						
-	-	1	1	1	1				1/100 Step						
0	0	-	-	-	-				Over-current detection						
-	-	-	-	-	-				-						
								EMO output setting	low voltage detection		0				
1	0	-	-	-	-								(VM pin voltage		
1	1									monitoring) TSD					
		-	- 0	-	- 0				100%						
-	-	-	0	0	1				90%						
<u> </u>	_	_	0	1	0				80%						
-	-	-	0	1	1			Current setting reference voltage	70%						
_	-	-	1	0	0			attenuation ratio	60%		0				
-	-	-	1	0	1			setting	50%						
-	-	-	1	1	0				40%	1					
-	-	-	1	1	1	0	1		30%						
-	0	0	-	-	-				MIXED DECAY (25% FAST)						
_	0	1	-	-	-			DECAY mode	MIXED DECAY (50% FAST)	0					
-	1	0	-	-	-			setting	SLOW DECAY	1					
-	1	1	-	-	_				FAST DECAY	1					
0	-	-	-	-	-			STEP signal	0.52s]					
1	-	-	-	-	-			detection time setting	1.04s		0				

Seria	l Data	a Trutl	h Tab	le 2								
	Input							Setting mode	Description	Serial data tim	a reflection ing	
D7	D6	D5	D4	D3	D2	D1	D0	-		STEP	STB	
-	-	-	-	0	0				0.5µs			
-	-	-	-	0	1			Blanking time	1.0µs		0	
-	-	-		1	0			setting	2.0µs		0	
-	-	-		1	1				4.0µs			
-	-	0	0		-				0.5µs			
-	-	0	1		-	1	0	Through current protector OFF	1.0µs		0	
-		1	0	-	-		Ŭ	time setting	2.0µs		Ũ	
-		1	1	-	-				4.0µs			
0	0		-	-	-			chopping (PWM) period setting	8µs			
0	1		-	-	-				16µs		0	
1	0	-	-	-	-				24µs		ő	
1	1	-	-	-	-				32µs			
-	-	-	-	-	0				ON			
-	-	-	-	-	1				Over-current protection setting	OFF (Disable over-current protection)		0
-	-	-	-	0	-			Ū	Latch type			
-	-	-	-	1	-				Auto reset type			
-	-	-	-	-	-	1	1		-			
-	-	-	-	-	-			_	-	_		
-	-	-	-	-	-			-	_	_	-	
-	-	-	-	-	-				-			
-	-	-	-	-	-				-			
-	-	-	-	-	-			_	-	_	_	
-	-	-	-	-	-			_	-	-	_	
-	-	-	-	-	-				-			

2. Reference describing operation

(2-1) Standby function (ST)

When ST pin is Low, the IC enters standby mode, all logic is reset and output is turned OFF. When ST pin is High, the standby mode is released.

(2-2) STEP pin function (STEP)

STEP input advances electrical angle at every rising edge (advances step by step).

Inp	out	Operating mode
ST	STEP	Operating mode
Low	*	Standby mode
High		Excitation step proceeds
High		Excitation step is kept

(2-3) Excitation setting method (D0="0", D1="0")

Set the micro step resolution as shown below table by serial data setting.

	Inp	out		Micro step	Initial p	osition
D5	D4	D3	D2	resolution (STEP)	1ch current	2ch current
0	0	0	0	1/2	100%	0%
0	0	0	1	1/4	100%	0%
0	0	1	0	1/8	100%	0%
0	0	1	1	1/16	100%	0%
0	1	0	0	1/32	100%	0%
0	1	0	1	1/64	100%	0%
0	1	1	0	1/128	100%	0%
0	1	1	1	1/3	100%	0%
1	0	0	0	1/6	100%	0%
1	0	0	1	1/12	100%	0%
1	0	1	0	1/36	100%	0%
1	0	1	1	1/5	100%	0%
1	1	0	0	1/10	100%	0%
1	1	0	1	1/20	100%	0%
1	1	1	0	1/50	100%	0%
1	1	1	1	1/100	100%	0%

The initial position is also the default state at start-up and excitation position at counter-reset in each micro step resolution.

(2-4) Position detection monitoring function (MO)

The MO position detection monitoring pin is an open drain type.

When the excitation position is in the initial position, the MO output is placed in the ON state.

(Refer to "Examples of current waveforms in each of the excitation modes.")

(2-5) Constant-current setting

The constant-current control setting consist of the VREF voltage setting and RF1(2) resistor connected between RF1(2) and ground. The current is set according to the following equation.

IOUT $[A] = (VREF [V] / 5) / RF1 (2) [\Omega]$

Also, the voltage applied to the VREF pin can be switched to eight stages settings by the serial data setting. This function is effective for power saving when the motor holding current is applied.

Attenuation function of the VREF input voltage. (D0="1", D1="0")

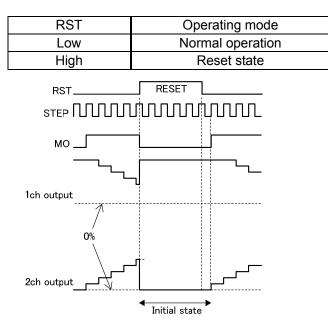
D4	D3	D2	Current setting reference voltage attenuation ratio
0	0	0	100%
0	0	1	90%
0	1	0	80%
0	1	1	70%
1	0	0	60%
1	0	1	50%
1	1	0	40%
1	1	1	30%

The output current calculation method for using of attenuation function of the VREF input voltage is as below.

 $I_{OUT} = (VREF / 5) \times Attenuation ratio / RF resistance$

e.g. When the VREF is 1.5V and the set reference voltage is 100% and the RF resistance is 0.1Ω , the following output current is set.

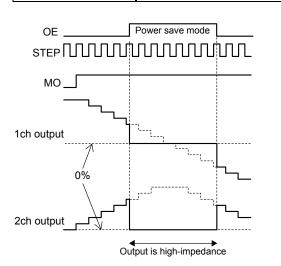
 $I_{OUT} = 1.5 / 5 \times 100\% / 0.1\Omega = 3.0A$


In this conditions, when 50% is set to reference voltage attenuation ratio,

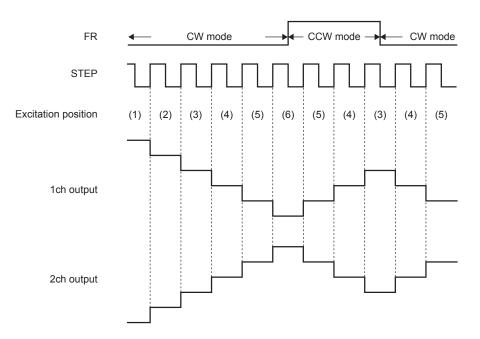
 $I_{OUT} = 1.5 / 5 \times 50\% / 0.1\Omega = 1.5A$

Therefore, the power saving is executable by attenuation of the output current when motor holding current is supplied.

(2-6) Reset function (RST)


When the RST pin is set High, the output goes to initial mode and excitation position is fixed in the initial position for STEP pin and FR pin input. MO pin outputs at low levels at the initial position. (Open drain connection)

(2-7) Output enable function (OE)


When the OE pin is set High, the output is forced OFF and goes to high impedance. However, the internal logic circuits are operating, so the excitation position proceeds when the STEP is input. Therefore, when OE pin is returned to Low, the output level conforms to the excitation position proceeded by the STEP input.

OE	Operating mode
Low	Output ON
High	Output OFF

(2-8) Forward / reverse switching function (FR)

FR	Operating mode
Low	Clockwise (CW)
High	Counter-clockwise (CCW)

The internal D/A converter proceeds by a bit on the rising edge of the step signal input to the STEP pin. In addition, CW and CCW mode are switched by FR pin setting.

In CW mode, the channel 2 current phase is delayed by 90° relative to the channel 1 current.

In CCW mode, the channel 2 current phase is advanced by 90° relative to the channel 1 current.

(2-9) DECAY mode setting

Current DECAY method is selectable as shown below by the serial data setting.

D6	D5	DECAY mode
0	0	MIXED DECAY (25%FAST)
0	1	MIXED DECAY (50%FAST)
1	0	SLOW DECAY
1	1	FAST DECAY

DECAY mode setting (D0="1", D1="0")

(2-10) Blanking time setting

If, when exercising PWM constant-current chopping control over the motor current, the mode is switched from decay to charge, the recovery current of the parasitic diode may flow to the current sensing resistance, causing noise to be carried on the RF pin, and this may result in erroneous detection. To prevent this erroneous detection, a blanking period is provided to prevent the noise occurring during mode switching from being received. During this period, the mode is not switched from charge to decay even if noise is carried on the RF pin.

Blanking time is selectable as shown below by the serial data setting.

Blanking time setting (D0="0", D1="1")

D3	D2	Blanking time setting
0	0	0.5µs
0	1	1.0µs
1	0	2.0µs
1	1	4.0µs

(2-11) Through current protector OFF time setting

This IC establishes the OFF time so as not to turn ON upper and lower side FET at the same time. Through current protector OFF time is selectable as shown below by the serial data setting.

Through current protector OFF time setting (D0="0", D1="1")

D5	D4	Through current protector OFF time
0	0	0.5µs
0	1	1.0µs
1	0	2.0µs
1	1	4.0µs

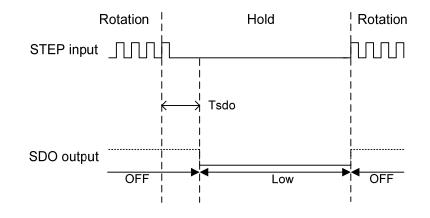
(2-12) Chopping (PWM) period setting

For constant-current control, this IC performs chopping operations at the frequency determined by the serial data setting.

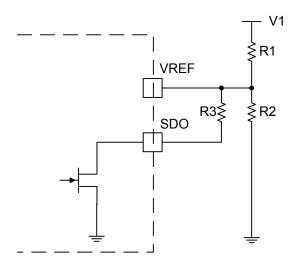
Choppin	<u>g (i vvivi</u> ,	pendu setting (D0= 0, D1=
D7	D6	Chopping (PWM) period
0	0	8µs
0	1	16µs
1	0	24µs
1	1	32µs

Chopping (PWM) period setting (D0="0", D1="1")

(2-13) STEP detection output (SDO)


The SDO pin is an open-drain output.

When STEP signal is not input more than detection time, the open-drain is turned ON and output level is Low. The open-drain was turned ON one time, it is turned OFF by inputting STEP signal again.


STEP signal detection time (Tsdo) is set as shown below by serial data setting.

STEP signal detection time setting (D0="1", D1="0")

D7	STEP signal detection time
0	0.52s
1	1.04s

By connecting circumference parts like the example of the following circuit diagram using a SDO pin, that is a STEP signal is not inputted more than detection time, it is a SDO output's turning on in the state of holding turning on electricity the position of a stepping motor, and setting current's falling because VREF input voltage's falls, and stopping power consumption — it can do.

(Example) When V1=5V, R1=27k Ω , R2=4.7k Ω , R3=1k Ω , the VREF input voltage is shown below. SDO output OFF: VREF = V1 × R2 / (R1+R2) = 0.741V SDO output ON: VREF = V1 × (R2//R3) / (R1+ (R2//R3)) = 0.126V

(2-14) Over-current protection

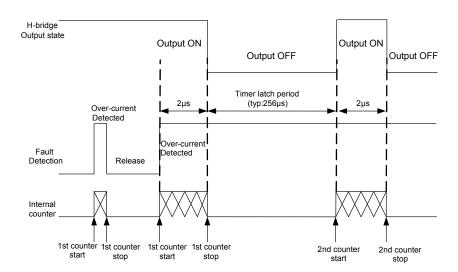
The LV8726TA incorporates an over-current protection circuit that, when the output has been shorted by an event such as shorting to power or shorting to ground, sets the output to OFF mode in order to prevent the IC from being damaged. As for the detection level of upper side Pch MOSFET, the voltage between drain and source is approximately 3V. As for the detection level of lower side Nch MOSFET, the voltage is set the following equation by constant current(Iout) and RF1(2) resistor connected between RF1(2) and ground.

- Detection level of lower side Nch MOSFET: Vocpl Vocpl [V] \approx Iout [A] \times RF1(2) resistor [Ω] \times 3
- e.g. When the Iout is 3.0A and the set reference voltage is 100% and RF resistance is 0.1 Ω Vocpl \approx 3.0A \times 0.1 Ω \times 3 = 0.9V

Over-current protection is set as shown below by serial data setting Over-current protection setting (D0="1", D1="1")

D2	State
0	Over-current protection ON
1	Over-current protection OFF

When a state of over-current protection is ON, the detection mode of it can change like the following table by serial data setting.


Over-current protection mode setting (D0="1", D1="1")

D3	Mode
0	Latch type
1	Auto reset type

(2-14-1) Latch type

In the latch mode, when the output current exceeds the detection current level, the output is turned OFF. When over-current is detected for 2μ s, over-current detection circuit is operating and output is once turned OFF. Subsequently, the output is turned ON again after the timer latch period (typ. 256 μ s). If the output remains in over-current condition, it is turned OFF again, and fix the output state to OFF mode, and EMO output is turned ON.

When output is fixed in OFF mode by over-current protection, this state is released by setting ST = "L".

(2-14-2) Auto reset type

In the automatic reset mode, when the over-current protection is operating, the output waveform changes to the switching waveform.

As with the latch system, when the over-current condition is detected, the over-current protection circuit is activated. When the operation of the over-current detection circuit exceeds the timer latch time $(2\mu s)$ described later, the output is changed over to the OFF mode and is reset to the ON mode again in 2ms (typ). In this event, if the over-current mode still continues, the switching mode described above is repeated until the over-current mode is canceled.

(2-15) Unusual condition warning output pins (EMO)

The LV8726TA is provided with the EMO pin which notifies the CPU of an unusual condition if the protection circuit operates by detecting an unusual condition of the IC. This pin is of the open-drain output type and when an unusual condition is detected, the EMO output is placed in the ON (EMO = Low) state.

EMO output is selectable as shown below by the serial data setting.

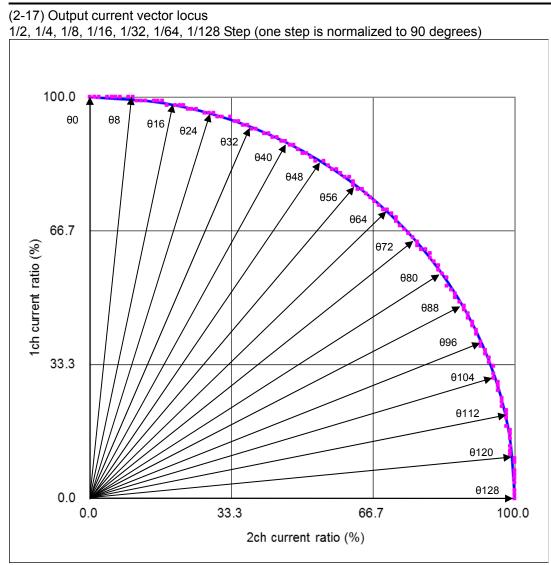
EMO output setting (D0="0", D1="0")

	3(
D6	EMO output	Notes
0	Over-current detection	(1)
-	-	
0	Low voltage detection (VM pin voltage monitoring)	(2)
1	TSD	
		0 Over-current detection

*Notes

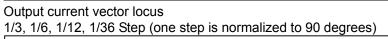
(1) Shorting-to-power, shorting-to-ground, or shorting-to-load occurs at the output pin and the over-current protection circuit is activated.

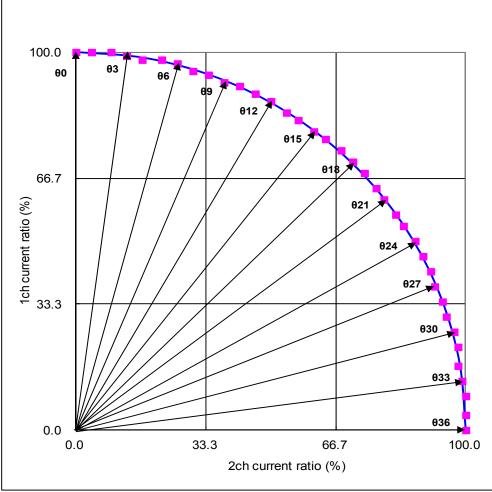
(2) When the VM voltage was less than 8V, a low voltage protection circuit is activated.


(2-16) Thermal shutdown circuit function

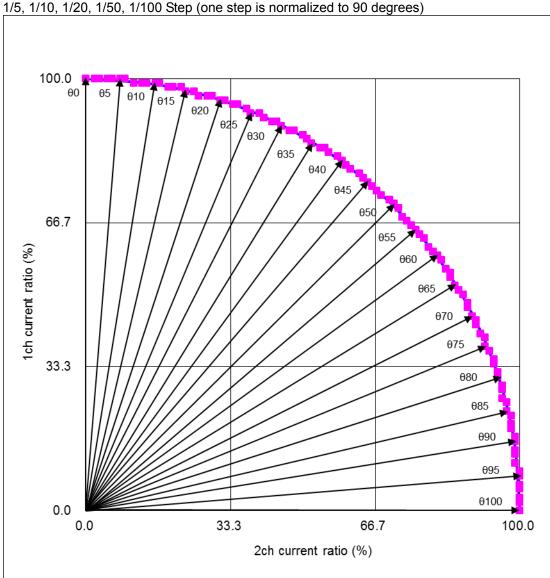
The Thermal shutdown circuit is built into, and the output is turned off when junction temperature Tj exceeds 180°C. The value of hysteresis and when it falls, the temperature drives the output again (automatic restoration).

The overheating protection circuit doesn't secure protection and the destruction prevention of the set because it becomes operation by the area where ratings $Tjmax=150^{\circ}C$ of the junction temperature was exceeded.

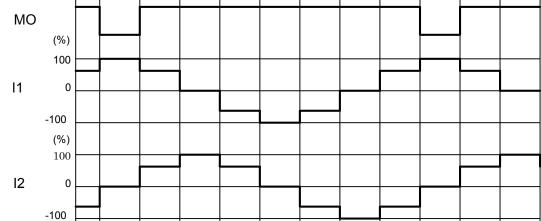

 $TSD = 180^{\circ}C (typ)$

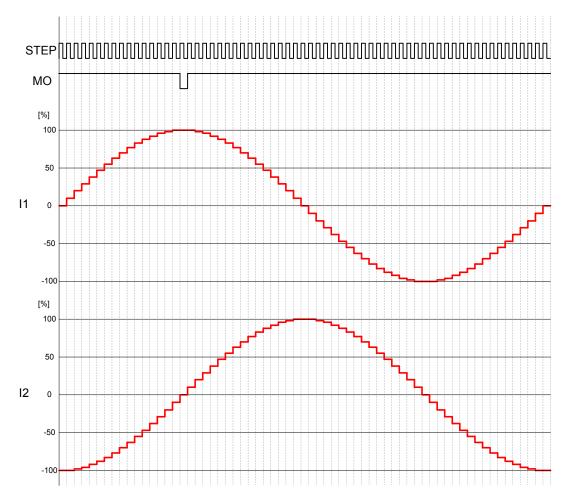

 $\Delta TSD = 40^{\circ}C (typ)$

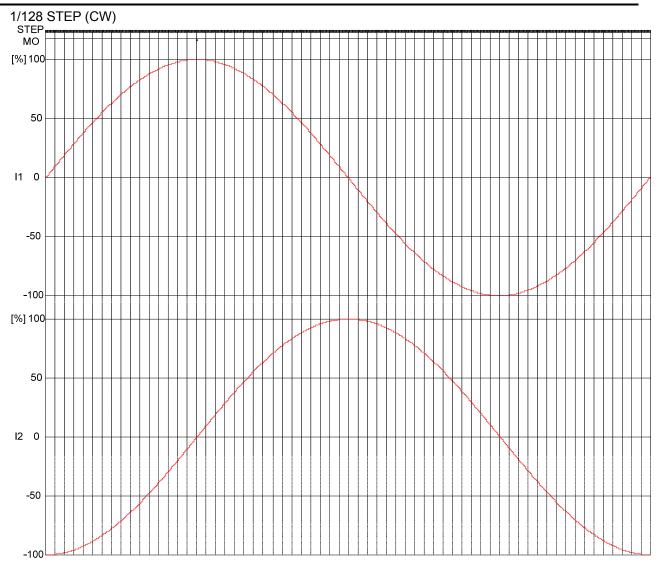
Current setting ratio in each micro step resolution 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 Step

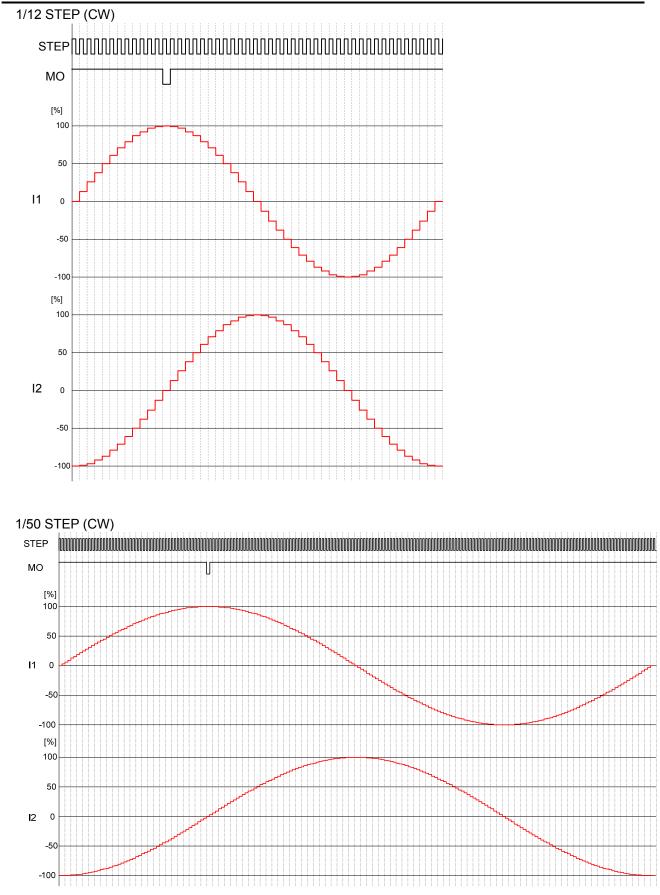

1/2,													· · · ·		i														
			1/64			Step		Step				Step	1/2 5			1/128		1/64		1/32			Step		Step		Step	1/2 \$	
STEP	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	STEP	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
0 0	100	0	100	0	100	0	100	0	100	0	100	0	100	C	065	70	72												
θ1	100	1								-		-			066	69		69	72										
θ2	100	2		2											000	68	73	00											
			100	2														07		07	74								
θ3	100	4													068	67	74	67	74	67	74								
θ4	100	5	_	5	100	5									0 69	66	75												
θ5	100	6													θ70	65	76	65	76										
θ6	100	7	100	7											θ71	64	77												
θ7	100	9													θ72	63	77	63	77	63	77	63	77						
08	100	10		10	100	10	100	10							073	62	78												
00	99	11			100		100								θ74	62	79	62	79										
				10														02	15										
θ10	99	12		12											θ75	61	80												
θ11	99	13													θ76	60	80		80	60	80								
θ12	99	15	99	15	99	15									θ77	59	81												
θ13	99	16													θ78	58	82	58	82										
θ14	99	17	99	17											079	57	82												
θ15	98	18													080	56	83	56	83	56	83	56	83	56	83				
θ16	98	20		20	98	20	98	20	98	20					000	55	84	00	00	00	00	00	00	00	00				
θ17	98			20	50	20	50	20	30	20						53		53	84										
		21													082		84	53	84										
θ18	98	22		22											0 83	52	85												
θ19	97	23													θ84	51	86	51	86	51	86								
0 20	97	24	97	24	97	24									085	50	86												
θ21	97	25													0 86	49	87	49	87										
θ22	96	27		27											087	48	88												
022	96	28													088	47	88		88	47	88	47	88						
θ24	96	29		29	96	29	96	29							000	46	89	47	00	41	00	41	00						
				29	90	29	90	29																					
θ25	95	30	_												0 90	45	89	45	89										
θ26	95	31		31											091	44	90												
θ27	95	33													0 92	43	90	43	90	43	90								
θ28	94	34	94	34	94	34									0 93	42	91												
θ29	94	35													0 94	41	91	41	91										
020 030	93	36		36											001	39	92		0.										
030 031	93	37								-					035	38	92	38	92	38	92	38	92	38	92	38	92		
																			92	30	92	30	92	30	92	30	92		
θ32	92	38		38	92	38	92	38	92	38	92	38			097	37	93												
θ33	92	39													0 98	36	93		93										
θ34	91	41	91	41											099	35	94												
θ35	91	42													θ100	34	94	34	94	34	94								
θ36	90	43	90	43	90	43									θ101	33	95												
0 37	90	44													θ102	31	95	31	95										
θ38	89	45		45											θ103	30	95	0.	00										
				40																									
039	89	46													θ104	29	96		96	29	96	29	96						
θ40	88	47		47	88	47	88	47							θ105	28	96												
θ41	88	48													θ106	27	96	27	96										
θ42	87	49	87	49											θ107	25	97												
0 43	86	50													θ108	24	97	24	97	24	97								
θ44	86	51	86	51	86	51									0 109	23	97												
θ45	85	52						<u> </u>			1				θ110	22	98	22	98										
θ46	84	53		53											θ111	21	98		50										_
				53			\vdash																						
θ47	84	55													0112	20	98		98	20	98	20	98	20	98		l		
θ48	83	56		56	83	56	83	56	83	56					θ113	18	98												
0 49	82	57													θ114	17	99	17	99										
θ50	82	58	82	58											θ115	16	99												
0 51	81	59													0116	15	99	15	99	15	99								
θ52	80	60		60	80	60					<u> </u>				θ117	13													
θ53	80	61													0117	12	99		99		-							-	
							<u> </u>					<u> </u>							99										
θ54	79	62		62											0119	11	99										l		
θ55	78	62													θ120	10	100	10	100	10	100	10	100						
θ56	77	63	77	63	77	63	77	63							θ121	9	100												
θ57	77	64													θ122	7	100	7	100										
θ58	76	65		65											θ123	6	100												
059	75	66						<u> </u>			<u> </u>				θ124	5	100	5	100	5	100								
				67	74	67	-									4			100	3	100							-	
060	74	67		67	74	67	-		<u> </u>			-	┢──┤		θ125 0100		100	_											
0 61	73	68	_												θ126	2	100	2	100										
0 62	72	69		69											θ127	1	100												
0 63	72	70													θ128	0	100	0	100	0	100	0	100	0	100	0	100	0	100
θ64	71	71	71	71	71	71	71	71	71	71	71	71	71	71															
·	i					· · · · ·			ن					_															

Current setting ratio in each micro step resolution 1/3, 1/6, 1/12, 1/36 Step

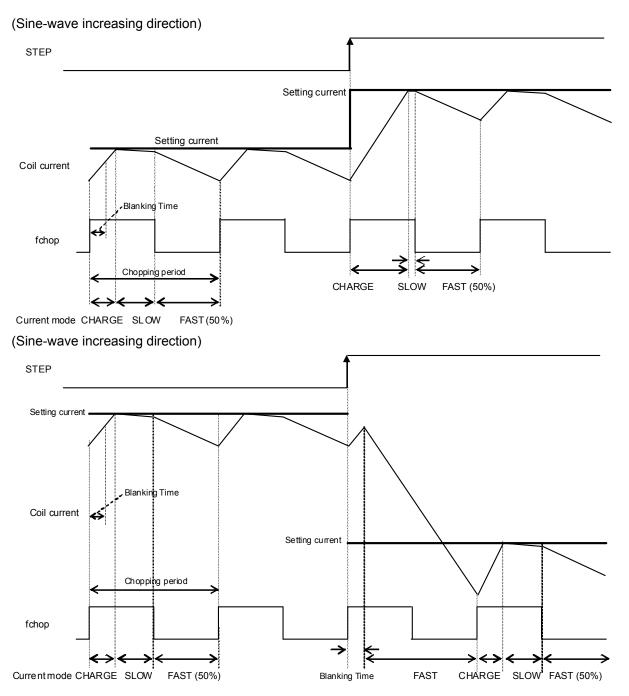

	1/36	Step	ep 1/12 Step		1/6 \$	1/3 Step			1/36	1/36 Step		Step	1/6 Step		1/3 \$	Step	
STEP	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	STEP	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
θ0	100	0	100	0	100	0	100	0	θ19	68	74						
θ1	100	4							θ20	64	77						
θ2	100	9							θ21	61	79	61	79				
θ3	99	13	99	13					θ22	57	82						
θ4	98	17							θ23	54	84						
θ5	98	22							θ24	50	87	50	87	50	87	50	87
θ6	97	26	97	26	97	26			θ25	46	89						
θ7	95	30							θ26	42	91						
θ8	94	34							θ27	38	92	38	92				
θ9	92	38	92	38					θ28	34	94						
θ10	91	42							θ29	30	95						
θ11	89	46							θ30	26	97	26	97	26	97		
θ12	87	50	87	50	87	50	87	50	θ31	22	98						
θ13	84	54							θ32	17	98						
θ14	82	57							θ33	13	99	13	99				
θ15	79	61	79	61					θ34	9	100						
θ16	77	64							θ35	4	100						
θ17	74	68							θ36	0	100	0	100	0	100	0	100
θ18	71	71	71	71	71	71											


Current setting ratio in each micro step resolution 1/5, 1/10, 1/20, 1/50, 1/100 Step


1/5, 1/	10, 1	/20,	<u>1/50,</u>	1/10																	
	1/100	1/100 Step		1/50 Step		1/20 Step		1/10 Step		1/5 Step		1/100 Step		1/50 Step		1/20 Step		1/10 Step		1/5 Step	
STEP	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	STEP	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
θ0	100	0	100	0	100	0	100	0	100	0	0 51	70	72								
θ1	100	2									θ52	68	73	68	73						
θ2	100	3	100	3							θ53	67	74								
θ3	100	5									θ54	66	75	66	75						
θ4	100	6		6							055	65	76			65	76				
θ5	100	8		-	100	8					056	64	77	64	77						
θ6	100	9		9							000	63	78	•.							
θ7	99	11	100								001 058	61	79	61	79						
θ8	99	13	99	13							θ59	60	80	01	15						
00 09	99	14	33	15							θ60	59	81	59	81	59	81	59	81	59	81
θ10	99	14	99	16	99	16	99	16			θ61	58	82	09	01	59	01	09	01	59	01
	99 99	17	99	10	99	10	99	10			θ62	56	83	56	83						
θ11 010				40										00	83						
θ12	98	19	98	19							θ63	55	84	5.4							
θ13	98	20									θ64 005	54	84	54	84	50	05				
θ14	98	22	98	22							θ65 000	52	85			52	85				
θ15	97	23			97	23					066	51	86	51	86						\vdash
016	97	25	97	25							067	50	87								
θ17	96	26									0 68	48	88	48	88						
θ18	96	28	96	28							069	47	88								
θ19	96	29									θ70	45	89	45	89	45	89	45	89		
θ20	95	31	95	31	95	31	95	31	95	31	θ71	44	90								
θ21	95	32									θ72	43	90	43	90						
θ22	94	34	94	34							θ73	41	91								
θ23	94	35									θ74	40	92	40	92						
θ24	93	37	93	37							θ75	38	92			38	92				
θ25	92	38			92	38					θ76	37	93	37	93						
θ26	92	40	92	40							θ77	35	94								
θ27	91	41									078	34	94	34	94						
θ28	90	43	90	43							θ79	32	95								
θ29	90	44									080	31	95	31	95	31	95	31	95	31	95
θ30	89	45	89	45	89	45	89	45			081	29	96	-							
0 31	88	47									082	28	96	28	96						
032	88	48	88	48							083	26	96								
033	87	50									084	25	97	25	97						
θ34	86	51	86	51							085	23	97	20	01	23	97				
θ35	85	52		01	85	52					θ86	23	98	22	98	20	57				<u> </u>
035 036	84	54	84	54							θ87	20	98								
θ37	84	55	04	54							θ88	19	98	19	98						
	83	56	83	56							088 089	19	98 99	19	90						┝──┤
θ38 020		56	03	ÖC							0 89	17		10	99	10	00	10	00		
θ39 040	82						~						99	16	99	16	99	16	99		<u> </u>
θ40 0.11	81	59		59	81	59	81	59	81	59	θ91	14	99	10	-						<u> </u>
θ41	80	60									θ92	13	99	13	99						└───┘
θ42 0.10	79	61	79	61							0 93	11									\vdash
θ43	78	63									094	9	100	9	100						\vdash
θ44	77	64	77	64							095	8	100			8	100				
θ45	76	65			76	65					096	6	100	6	100						
θ46	75	66	75	66							097	5	100								
θ47	74	67									0 98	3	100	3	100						
θ48	73	68		68							0 99	2	100								
θ49	72	70									θ100	0	100	0	100	0	100	0	100	0	100
θ50	71	71	71	71	71	71	71	71													


(2-18) Current wave example in each micro step resolution. (1/2 STEP, 1/16 STEP, 1/128 SETP, 1/12 STEP, 1/50 STEP) 1/2 STEP (CW)

1/16 STEP (CW)



(2-19) Current control operation MIXED DECAY current control operation

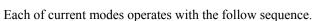
MIXED DECAY current control operation can change 50%FAST mode and 25%FAST mode by serial data setting.

In each current mode, the operation sequence is as described below

- According to chopping (PWM) period, the CHARGE mode begins. In the time defined as the "blanking time" the CHARGE mode is forced regardless of the magnitude of the coil current (ICOIL) and set current (IREF).
- By the setting of the DECAY mode, as for the 50%FAST mode, 50% of the chopping (PWM) period become FAST_DECAY mode, and, as for the 25%FAST mode, 25% of the chopping (PWM) period become FAST_DECAY mode.

Above operations are repeated. Normally, the SLOW (+FAST) DECAY mode continues in the Triangle wave increasing direction, then entering the FAST DECAY mode till the current is attenuated to the set level and followed by the SLOW DECAY mode.

SLOW DECAY current control operation


Coil current

fchop

Current mode

CHARGE

(Sine-wave increasing direction) STEP Coil current Coil current thop Chopping period Current mode CHARGE SLOW (Sine-wave decreasing direction) STEP Setting current Charge current Current mode CHARGE SLOW

Blanking Time

Chopping period

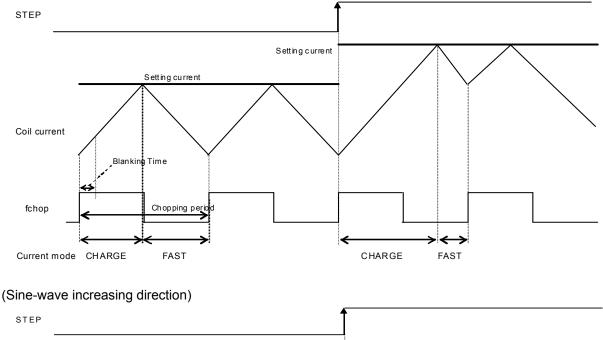
SLOW

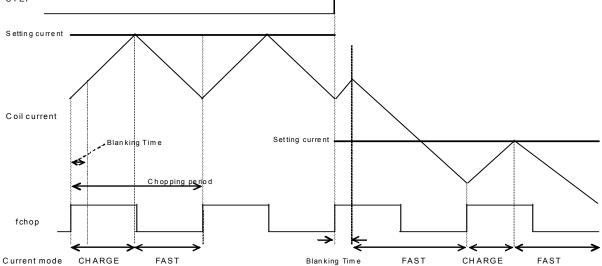
- According to chopping (PWM) period, the CHARGE mode begins.
 - A period of CHARGE mode (Blanking Time) is forcibly present, regardless of the current value of the coil current (ICOIL) and set current (IREF).

Blanking Time

SLOW Blanking Time

SLOW


Setting current

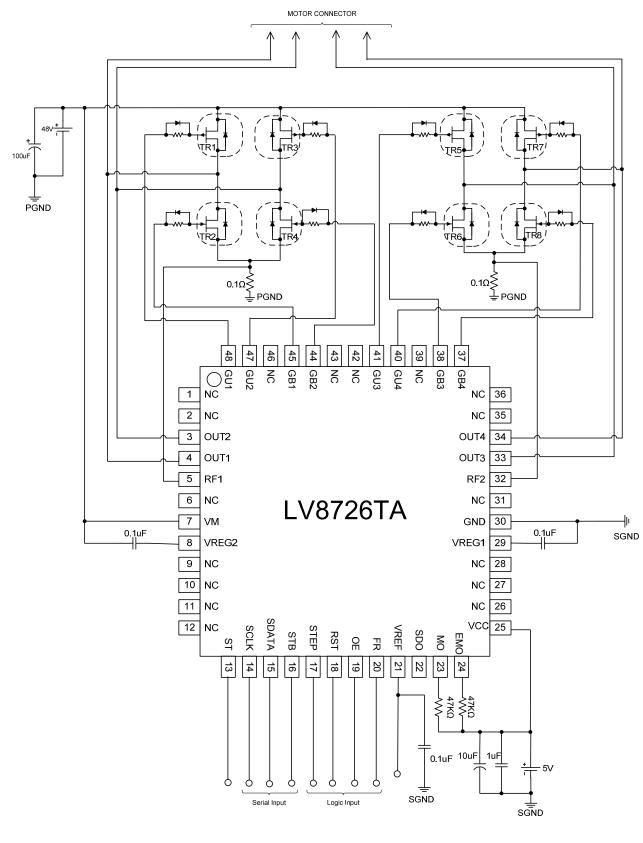

• After the period of the blanking time, the IC operates in CHARGE mode until ICOIL ≥ IREF. After that, the mode switches to the SLOW DECAY mode and the coil current is attenuated until the end of a chopping (PWM) period.

At the constant-current control in SLOW DECAY mode, following to the setting current from the coil current may take time (or not follow) for the current delay attenuation.

FAST DECAY current control operation

(Sine-wave increasing direction)

Each of current modes operates with the follow sequence.


• According to chopping (PWM) period, the CHARGE mode begins.

A period of CHARGE mode (Blanking Time) is forcibly present, regardless of the current value of the coil current (ICOIL) and set current (IREF).

•After the period of the blanking time, The IC operates in CHARGE mode until ICOIL \geq IREF. After that, the mode switches to the FAST DECAY mode and the coil current is attenuated until the end of a chopping (PWM) period.

At the constant-current control in FAST DECAY mode, following to the setting current from the coil current takes short-time for the current fast attenuation, but, the current ripple value may be higher.

Application Circuit Example

Setting of constant current When VREF = 1.5V, RF= 0.1Ω lout = (VREF/5) / RF = (1.5V/5) / 0.1Ω = 3.0A

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV8726TA-NH	TQFP48 EP 7×7 (Pb-Free / Halogen Free)	1000 / Tape & Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC modults for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent reg